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ABSTRACT 

Alkali metal dopants are common in coal combustion environments, biomass 

reforming for fuel, and have applications as dopants in combustion for diagnostics and 

plasma-based control approaches. Recently, alkali-doped solid propellant flames have been 

demonstrated for enhancing burning rate using continuous microwave-based plasma 

enhancement, where sodium has been utilized as an electron donor. The performance of 

microwave coupled burning propellant flames may be optimized through knowledge of the 

ground-state sodium distribution. However, these systems exhibit significant particle 

scattering, gray body emission backgrounds, and high optical density, complicating 

measurements via laser diagnostics. In this work, to infer the sodium distribution in the 

propellant flame, a single-photon and two-photon absorption laser-induced fluorescence 

techniques are applied. Two-photon laser-induced fluorescence is shown to improve laser 

scattering rejection and fluorescence trapping issues exhibited in resonant single-photon 

laser-induced fluorescence. The 3s-3d excitation scheme is compared directly with 3s-4d 

excitation by examining fluorescence, amplified spontaneous emission, and ionization 

levels in sodium doped flame to optimize laser fluence levels. Significant resonance-

enhanced multiphoton ionization and amplified spontaneous emission are presented in two-

photon excitation schemes. Two-photon laser-induced fluorescence is applied to ground-

state atomic sodium spatial distributions in microwave-coupled solid propellant flames.  
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CHAPTER 1.    INTRODUCTION 

1.1 Motivation 

Alkali compounds are naturally present in coal, organic matter in biomass-derived 

fuels1, and in animal tissue as ingredients2,3. In combustion, alkali-content can play a role in 

reactions with the indigenous sulfur, impurities, and agents are typically added to control sulfur 

dioxide formation2. Alkali metals have also been used in a variety of combustion and high-

speed aerodynamic systems. In addition, sodium can either be added to combustion 

environments for temperature measurements4, or aerodynamic flow for velocity 

measurements5. Due to the accessibility of sodium D lines and high absorption cross section, 

sodium is an attractive alkali for these purposes6. The low ionization threshold of alkali vapors 

has also been proposed for a number of plasma-based combustion and flow techniques. One 

promising application involving the addition of sodium or alkali metal vapors is in 

magnetohydrodynamic power extraction, where a few percent of sodium or cesium vapor has 

been proposed to increase the extraction of electrical power from hypersonic flows86-87. An 

additional application of particular interest to the work presented in this dissertation is seeding 

alkali metal as an electron donor for microwave-assisted combustion and flame speed 

enhancement due to low ionization threshold.  

Solid propellants are used for a variety of propulsion applications. Unlike liquid 

engines or hybrid rockets7, which can dynamically control flow rate, control of solid propellant 

rocket engines is difficult. Moreover, solid propellant burning instabilities can generate 

unwanted vibration in the engines8. Finally, ignition and extinction of solid rocket motors are 

difficult to achieve in practice. Recently, the microwave-enhanced combustion of alkali-doped 

solid propellant formulations was shown to enhance burning rates by Barkley et al.9,10. The 
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modification of microwave energy deposition to the flame by changing the doping level of 

low-ionization threshold alkali metals offers the potential for active control of solid propellant 

burning.  

Nearly all solid propellants are composite mixtures of several ingredients such as 

oxidizer, fuel, binder, plasticizer, stabilizer and cross-linking agent. The specific chemical 

composition depends on the desired combustion characteristics for a propellant application. 

The heterogeneous or composite propellant ingredients include ammonium perchlorate (AP) 

as oxidizers, hydroxyl-terminated polybutadiene (HTPB) as binder, and aluminum as 

stabilizer. Solid propellant flames have strong gray body emission, multiphase reactions, 

complex chemistry reactions, and heterogeneous and time-varying composition11. It is 

necessary to understand the decomposition processes and kinetic mechanisms of the solid 

propellants to establish models12. The development of such models is a significant step towards 

more accurate and comprehensive predictions, and helps optimize chemical compositions to 

meet the required needs13.   

Studies on the microwave-throttling of composite propellant formulations with the 

addition of sodium dopant have identified a complicated set of mechanisms with potential 

energy addition in the gas phase, the condensed phase of the bulk propellant, and the 

condensed-phase products present in metalized propellant formulations9. In the deposition to 

the gas-phase of these flames, the hypothesis is that the doping level of sodium is a significant 

driver in the amount of absorbed energy. In order to better characterize the interaction of the 

multiphase propellant combustion flame with the microwave field, an improved understanding 

of the distributions and role of seeded atomic sodium in these systems is required. Detailed 

investigation of the distribution of atomic sodium distribution relative to the propellant flame 
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structure is necessary to account for the microwave energy coupling processes in the 

microwave-enhanced propellant burning. 

1.2 Literature Review  

Solid propellant combustion exhibits both high temperature and multiphase 

phenomena, which makes it a challenging environment for study11. Due to this fact, laser-based 

combustion diagnostics have potential as non-intrusive, in-situ, and high resolution (temporal 

and spatial) measurement techniques to study propellant combustion14. Information about the 

thermodynamic environment, the species distributions, and the phase distributions is helpful 

for understanding basic combustion processes, and can also be applied to build up detailed 

numerical models. Several optical techniques have been applied to solid propellant flames, 

including emission spectroscopy15,16, absorption spectroscopy17, Raman spectroscopy18,19 and 

laser-induced fluorescence (LIF)12,20.  

For the alkali-metal doped propellant flames we are considering, sodium spectroscopy 

is a possible candidate for determining local temperature and sodium concentration distribution 

in the flame. Although single-photon laser-induced fluorescence (LIF) has been successfully 

applied for temperature and concentration measurements of sodium previously, correction is 

required in high optical density environments due to the resonant excitation and emission6,21. 

The issue of fluorescence re-emission and particle scattering in the flame cannot be avoided 

by optical filters.  

Alternative methods have been explored in small molecules and atoms using 

multiphoton laser excitation and subsequent fluorescence. Similar multiphoton techniques 

have been studied extensively in combustion environments using H atom22, O atom23 and the 

CO molecule24. For these atomic systems, two-photon laser-induced fluorescence (TALIF) has 

the advantage of avoiding fluorescence trapping as compared to single-photon resonance 
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excitation. To understand the fundamental of sodium TALIF, this work was done by premixed 

sodium seeded flame, then applied to a propellant flame. It shows the promising way to show 

the qualitative map of sodium concentration distribution map in the flame environments.  

1.3 Objectives 

The objectives of this dissertation are three-fold. They include: 

1. The qualitative determination of atomic alkali distributions in highly scattering 

multiphase combustion environments. 

2. The qualitative determination of alkali distributions in environments with high number 

density atomic species and the assessment of quantitative mapping with two-photon 

laser-induced fluorescence of sodium. 

3. The determination of the variation in sodium distributions leading to plasma production 

and flame enhancement effects in microwave-enhanced propellant flames. 

1.4 Summary of Thesis 

In this thesis, a two-photon absorption planar laser-induced fluorescence (TALIF) of 

sodium is detailed. The second harmonic of a 10 Hz nanosecond Nd:YAG laser was used to 

pump a dye laser to achieve three separate excitation schemes for sodium atomic fluorescence. 

A one-photon excitation scheme at 589 nm is compared to two-photon excitation schemes at 

578 nm and 685 nm in a sodium-seeded gas-phase burner. The use of sodium TALIF schemes 

in the gas-phase flame showed improved signal trapping characteristics, reduced laser 

scattering, and allowed signal-to-noise determination for the various excitation schemes. 

In sodium-doped propellant flames, improvements in signal-to-noise ratio were 

realized with 685 nm two-photon excitation and show the capability of mapping alkali atomic 

concentrations in the highly scattering, high optical density environment of the sodium-doped 
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propellant flames. TALIF images of microwave-coupled sodium-doped propellants indicated 

ground state sodium distribution increases over the baseline.  

The thesis is organized in the following sections. An overview of the basic theory of 

two-photon absorption laser-induced fluorescence and a set of rate equations including two-

photon excitation, fluorescence, ionization, and amplified spontaneous emission is discussed. 

Following this, the details of the experimental setup are discussed, including a sodium-seeded 

gas-phase flame, sodium-doped propellant burning, and a microwave-coupled propellant 

burning experiment. The results of the gas-phase flame experiments are compared with the 

simple model and the results of sodium distributions in the propellant flames are discussed. 

Finally, in the concluding chapter, the prospects for quantitative measurements in the future 

application of the two-photon excitation scheme and a summary of the contributions of the 

thesis are presented.  
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CHAPTER 2.    OVERVIEW OF DIAGNOSTIC MEASUREMENTS IN 

MULTIPHASE COMBUSTION 

2.1 Introduction 

In this chapter, an overview is given for optical techniques that have been applied to 

solid propellant flames, including emission spectroscopy, absorption spectroscopy, Raman 

spectroscopy and laser-induced fluorescence (LIF). In addition, the details of sodium LIF 

selection rules and a system of rate equations for the two-photon laser-induced fluorescence 

process are presented considering fluorescence, quenching, amplified spontaneous emission 

and ionization.  

2.2 Overview of Optical Diagnostics for Multiphase Combustion Environments 

Multiphase combustion environments are characterized by the presence of multiple 

coexisting phases. These environments consist of a complex interplay between gas-phase 

combustion, surface reactions, phase change processes, and a mix of diffusion and premixed 

combustion phenomena. Examples include solid propellant combustion for rocket motor 

applications, energetic material combustion, fires involving liquid fuel pools, and wildland 

fires. In these systems, the introduction of mechanical probes can significantly alter the local 

combustion phenomena through local heat transfer and reaction quenching effects, so the use 

of non-intrusive optical and laser diagnostics have often been employed. Compared to intrusive 

techniques such as a thermocouple or probe sampling, optical diagnostics have the advantage 

of making measurements with minimal disturbance to the flow field. In environments with 

particles and droplets and at high temperature, optical and laser-based techniques offer unique 

advantages in characterizing these combustion processes.  

Non-intrusive optical methods have been used in a variety of gas phase combustion 

systems14,25–27, but multiphase combustion environments present additional challenges28. The 
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efforts to characterize atomic sodium distribution presented in this dissertation are focused on 

applications in solid propellant flames, so the discussion will focus mainly on similar 

applications. Solid propellant flames present a particularly harsh environment because of 

multiphase, fast timescales (vaporization/volatilization/decomposition and kinetic), small 

scales of interest, and the presence of high temperature flames exhibiting both premixed and 

diffusion behavior. Also, the typical solid propellant flame structure is multi-zone, with 

significant variation in chemical composition. An example of the composite propellant flame 

structure is shown in Figure 2.1. As a solid propellant burns, both the oxidizer and the binder 

are preheated by conduction, resulting in a temperature gradient through the solid 

propellant13,29. The flame structure is typically composed of three distinct regions: partially-

premixed flame, monopropellant flame, and a final diffusion flame. The diagram in Figure 2.1 

shows the flame structure over a burning oxidizer crystal (ammonium perchlorate for the 

studies in this dissertation). 

 

Figure 2.1 Composite propellant flame structure as illustrated by Beckstead et al.29, and 

Hedman et al30. 

A number of optical and laser diagnostics have been employed to examine the complex 

reaction and flame structures on a variety of propellants. 
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This section presents the application of a variety of optical and laser diagnostics for 

measurement in solid propellant flames. These techniques include emission and absorption 

spectroscopy, Raman spectroscopy, and laser-induced fluorescence to target temperature and 

species concentrations. 

2.2.1 Emission/Absorption Spectroscopy 

Emission spectroscopy has been applied for identification of atomic and active 

intermediates in multiphase combustion. Spontaneous emission from upper states, excited 

either through the high temperature in the combustion region or through reactions resulting in 

electronically-excited fragments can be used to characterize typical hydrocarbon combustion 

intermediates (OH, CH) as well as particle combustion intermediates (aluminum monoxide, 

AlO15). For small molecules and atoms, these spectral features are well characterized, typically 

distinct from background emission, and can be used for estimates of species concentrations 

and temperature. Although making quantitative measurements of species concentration is 

complicated due to the path-integrated nature of the collection of emission, specific spectral 

peaks have been used to identify a variety of species present in flames.   

 

Figure 2.2  Emission spectrum of an aluminized propellant flame doped with 3.5% NaNO3. 

Evident features include atomic emission peaks, combustion intermediates, and broadband 

blackbody emission. 
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Reaction products and intermediates in emission spectra can be identified through 

comparison with tabulated data on transition strengths and line positions through the National 

Institute of Standards and Technology (NIST) or similar databases31. A sample spectrum of an 

aluminized ammonium perchlorate/HTBP composite propellant is shown in Figure 2. This 

propellant contains 3.5% NaNO3 dopant, and there are spectral features associated with CaCl, 

K, Li, AlO, and Na and gray body emission. In addition, in other types of composite propellant 

emission spectra have also shown OH in the ultra-violet region33, and H2O, CO2 and CO in the 

infrared region32. More studies using emission spectroscopy have been useful in characterizing 

species profiles32, temperature15,33, and combustion instabilities. In this thesis, emission 

spectroscopy is used as a global characterization of the propellant flame. 

For multiphase combustion, the high temperatures and presence of condensed phases 

typically result in significant blackbody or gray body emission. The broadband emission has 

been used in propellant flames by characterization with two-color pyrometry34. By assuming 

the emission spectrum follows blackbody/gray body behavior, a temperature estimate can be 

made by using a Planck distribution and a known wavelength-dependent calibration for the 

collection system. For gas phase temperature measurements, the spectra of aluminum 

monoxide emission has also been used to indicate the temperature33. These temperature 

measurements have been used with good success, but can present bias as the gray body 

emission is biased towards the condensed phase and the AlO emission represents the 

temperature in the diffusion flame structure of aluminum droplet combustion. 

While emission spectroscopy gives information tied to the upper state in a transition, 

absorption spectroscopy originates with the ground state and can be used to infer concentration, 

temperature, and pressure depending on the configuration utilized. Laser- and light-absorption 
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based methods are relatively simple to setup and have been used to identify species in solid 

propellant flames and in some instances to make quantitative measurements. The temperature 

and concentration of the molecule can be determined by fitting experimental spectra under 

some simple assumed experimental conditions. 

Ultraviolet (UV) and visible (VIS) absorption is useful in avoiding strong blackbody 

interferences in multiphase flames, and transitions in this region typically correspond to low-

lying electronic states. For small molecules and atoms, these transitions can be distinct and 

allow for species-selective excitation and detection. The UV/VIS range has been applied for 

absorption in solid propellant combustion processes to characterize important molecules and 

radicals including OH, NH, CH, HCN, H2O, CO2, CH4, N2O,  and NO32,35. These small 

molecules are well-characterized in this spectral range and can be modeled for given 

temperatures, pressures, and concentrations. UV/VIS and IR absorption spectroscopy of 

research department explosive (RDX) combustion were employed by Vanderhoff36 to 

understand molecules inside the dark zone-the region between the gas phase flame and burning 

surface where there is little emission of light. The experimental system consisted of a CO2 laser 

for ignition, Xe lamp as an incident light source, and high-speed video was acquired 

simultaneously with the spectral acquisition system. Various species concentration such as OH, 

CN, NH and NO, and temperature were quantified for ambient pressures to 1 MPa using 

absorption spectroscopy. 
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Figure 2.3  The optical experimental set up of absorption propellant experiments36. 

Reproduced with permission from Combustion and Flame.  

Vanderhoff36 extended these methods to infrared absorption experiments, as shown in 

Figure 2.3, to measure CO2, H2O, and HCN in the propellant product gases. These are all 

critical products and intermediates involved in the combustion chemistry. An absorption 

spectrum from Fourier Transform Infrared (FTIR) in the product region of RDX combustion 

is shown in Figure 2.4. Absolute species concentrations of CO, H2O, HCN, CH4 and N2O, as 

well as rotational temperature, were extracted from the spectra37.  

 

Figure 2.4  FTIR absorption spectrum in the IR range of both RDX-based XM39 and JA2. 

Species like HCN, N2O, CH4, CO2, and H2O have rotational-vibrational transitions that are 

observed using IR absorption spectrum37. Reproduced with permission from Combustion and 

Flame. 
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Absorption-based techniques can provide excellent quantitative information for 

multiple species, as demonstrated in RDX and propellant flame systems. However, particle 

scattering in multiphase combustion environments and strong background emission extending 

into the visible (gray body) can complicate the interpretation of laser-based absorption 

methods. In addition, absorption measurements are path-integrated, as are emission 

measurements. In highly variable, three-dimensional propellant flames, path-integrated 

techniques are challenging to apply for quantitative or localized information about the 

thermodynamic state or species concentrations. Many of these absorption techniques are 

limited by their temporal and spatial resolution when compared with other available methods. 

2.2.2 Raman Spectroscopy  

Raman spectroscopy is a widely used diagnostic for studying the rotational and 

vibrational structure of molecules. Rather than relying on path-integrated emission or 

absorption from rotational-vibrational-electronic transitions or rotational-vibrational 

transitions, Raman scattering techniques use inelastic scattering of incident light to infer 

rotational-vibrational information about the molecules. When the excitation laser beam 

interacts with an ensemble of molecules, inelastic scattering from the molecules can be 

generated which is shifted in energy by the difference between the ground and excited states. 

The inelastically-scattered photons then have energies corresponding to the vibrational and 

rotational states of the molecules. These techniques have been used extensively in 

combustion38,39, but the focus here will be on applications in multiphase combustion. Parr and 

Hanson-Parr40 built up a Raman scattering system shown in Figure 2.5, with a polarized 

Nd:YAG laser for illumination and a spectrometer to collect signal. The principal advantage 

of the Raman scattering technique is the detection of light in the visible to avoid interferences, 

and the potential for spatially-localized measurements. The range of molecules detectable via 
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Raman scattering includes symmetric molecules which are inaccessible via infrared absorption 

(N2, O2), and those with large dipole moments (HCl, H2O) using a single laser source. 

However, the small scattering cross sections and low signal level presents an extreme challenge 

in the multiphase combustion environment where interferences can be significant.  

 

 

Figure 2.5  Raman Scattering experiments by Parr and Hanson-Parr to study nitramine-doped 

propellant flame40. 

Another application of Raman spectroscopy known as coherent anti-Stokes Raman 

scattering (CARS) has been used to examine solid propellant flames and multiphase 

combustion. The CARS technique involves multiphoton, nonlinear processes with targeted 

species such as N2, H2, and O2
26. The target molecule is pumped to a virtual state by tuning two 

lasers such that the difference between them matches a rotational or vibrational transition 

frequency. During this process (or shortly after). After Stokes shifting, a second pump beam 

(probe) interacts with the resonantly excited molecules and results in coherently-scattered 

photons. The CARS signal results from the near-simultaneous presence of these three fields 

and produces a laser-like signal41. CARS has distinct advantages over linear Raman scattering 

as previously described: the coherent process can result in a significant signal generation which 
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is easily detected due its laser-like propagation, and the focusing of the pump, probe, and 

Stokes beams can permit excellent spatial resolution (sub-mm). If pulsed lasers are utilized, 

the technique has high temporal and spatial resolution.  

 

Figure 2.6  Coherent anti-Stokes Raman scattering energy diagram. In typical configurations, 

the pump and probe are the same wavelength, while the Stokes beam is shifted relative to the 

pump beam to match a rotational or vibrational transition in the molecule of interest. 

The earliest CARS studies of propellant flames were conducted by Harris and 

Eckbreth42,43. Based on the fitting of the collected signal spectrum, species concentrations were 

calculated for H2O, N2, CO, and CO2
44. The flame temperature could also be inferred.  Kearney 

et al.45 introduced a hybrid femtosecond/picosecond CARS approach with improved detection 

by providing ‘time-gated’ elimination of strong non-resonant background interference through 

the time-delayed probe pulse. The results from an aluminized strand burn are shown in Figure 

2.7 along with the experimental setup. Ultrafast or hybrid fs/ps CARS is a potential technique 

for probing the harsh, particle-laden, time-varying propellant combustion environment while 

eliminating strong interferences46. 
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Figure 2.7  Ultrafast CARS system for propellant flame temperature measurements. (a) 

Schematic of fs/ps rotational CARS instrument; (b) Probability density function of nitrogen 

vibrational temperature showing fluctuations in the plume of the aluminized propellant strand 

burner. Reproduced with permission from U.S. Goverment. 

 

2.2.3 Laser-Induced Fluorescence  

Other laser-based techniques which can be applied in combustion environments include 

laser-induced fluorescence (LIF). Single-photon laser-induced fluorescence techniques were 

developed shortly after the introduction of the visible laser14,24,47,48. In laser-induced 

fluorescence, the laser wavelength is tuned to match a particular absorption line of the atom or 

molecule of interest. That species is excited to an upper electronic state, from which it 

fluoresces, and this fluorescence emission is detected. The spontaneously-emitted fluorescence 

signal intensity is related to the target atom/molecule concentration. Temperature can also be 

measured by determining the distribution of the molecules over rotational or vibrational levels. 

In gas-phase combustion, LIF has been applied extensively to measure species including but 

not limited to OH, CH, and NO49,50, and resulting in significant databases for spectroscopy 

including quenching and energy transfer mechanisms.  

Planar laser-induced fluorescence (PLIF)14, a two-dimensional LIF technique, has been 

used extensively to study a variety of systems including laminar flames, turbulent flames, 
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combustion engines, and multiphase flows. PLIF involves forming the exciting laser into a 

uniform sheet of small thickness and significant height, and imaging the resulting fluorescent 

emission onto a sensitive detector array (typically an intensified charge-coupled device 

(CCD)). The principle advantage of PLIF is that regional variation in gas phase can be observed 

simultaneously. PLIF is also useful for transition events such as ignition and extinction. 

However, there are still multiple considerations in order to extract accurate, quantitative data. 

These include variations in quenching throughout the field, corrections for non-uniformity in 

the laser sheet, and laser energy corrections. 

PLIF has also been widely applied to understand solid propellant combustion. Parr and 

Hanson-Parr12,51,52 did pioneering investigations of propellant flame structure using PLIF of 

OH and CN radicals to help confirm phenomenological models for combustion of composite 

AP/HTPB propellants. In addition, they studied aluminum combustion in solid propellants 

using aluminum monoxide (AlO) PLIF, where the metal helped control combustion 

instability51. One challenge in applying PLIF to composite propellant flames and multiphase 

combustion systems is in the low repetition rate of traditionally available laser sources (10-50 

Hz). Although each pulse corresponds to a time-resolved image, low repetition rates create 

challenges for data interpretation in highly time-varying propellant flames. This challenge can 

be addressed through the use of multi-kHz, high power laser systems consisting of either diode-

pumped solid-state systems or burst-mode laser systems which have been used for combustion 

PLIF measurements at rates up to 100 kHz53–56.  Hedman et al.20,30 applied high-repetition-rate 

lasers (5 KHz) to make gas-phase OH PLIF measurements to understand bimodal AP/HTPB 

propellant ignition delay and diffusion flame structure at atmospheric and elevated pressures, 

as shown in Figure 2.8. They concluded that AP combustion behavior at 1 atm can be described 
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by a three-step process: protrusion above the surface as the surrounding binder burns away, 

ignition delay as the particle heats up, and regression as it deflagrates.  

LIF measurements in flames can provide good molecular specificity and high detection 

limits (down to ppm levels). However, for several relevant combustion radical species, a 

single-photon detection is limited by the high photon energies required. For atomic O, H, N, 

single photon absorption (to the first electronically excited states) lies in vacuum ultraviolet 

range. These wavelengths that are difficult to generate and cannot penetrate through air or 

flame environments due to absorption by other major species (O2, N2, etc.)57,58. Moreover, for 

these atomic species using single photon excitation, the laser excitation and emission 

wavelengths may be identical and interferences are difficult to avoid. As a note, in LIF of OH, 

for example, the typical excitation schemes involve excitation to a state which fluoresces to a 

low-lying third state, rather than back to the ground state.  For atomic species, interferences 

include signal trapping, strong attenuation of the incoming laser beam, re-fluorescence and the 

scattering of laser light which can not be rejected due to the identical excitation and emission 

wavelengths. Signal trapping refers to the absorption of emitted photons before reaching the 

detector and generally leads to a decrease in effective signal yield, which needs correction for 

quantitative measurements. In addition, re-fluorescence can lead to an effective elongation of 

the observed fluorescence lifetime and the broadening of flow features of interest. Alternative 

excitation and detection strategies have been explored previously using multiphoton laser 

excitation and subsequent fluorescence.  
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Figure 2.8   (a) Sequence of images showing the relative OH concentration above the burning 

surface. (b) Variation in height of the OH region directly above an AP crystal as a function of 

the crystal diameter. Reproduced with permission from Combustion and Flame. 

Multiphoton techniques have been studied extensively in combustion environments 

using N atom, O atom, H atom, and CO where two-photon absorption allows the of accessible 

wavelengths57–61. For two-photon absorption, two photons are absorbed simultaneously 

through interaction with a virtual state and fluorescence is detected in another wavelength 

range. However, two-photon LIF has the issues of photon-ionization, photolysis in flames. 

Moreover, stimulated emission and saturation may also occur at high laser intensity. A lot of 

research has been done to avoid or reduce these issues to infer atoms concentration62. 

Goldsmith58,63,64 reported photolytic interferences caused by H2O and photodissociation could 

not be avoided of atomic hydrogen nanosecond two-photon LIF. Lucht65 et al. have attempted 

to minimize the influence of quenching in two-photon LIF66 measurement using a scheme 

called photoionization-controlled loss spectroscopy. Frank et al. have shown that picosecond 

laser is a promising alternative for O-atom two-photon LIF with dramatically reduced 

interference from CO2 photolysis compared with nanosecond excitation. In addition, 

femtosecond two-photon laser-induced fluorescence could also avoid photolytic interference67. 
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All of these issues make quantitative interpretation of two-photon LIF challenging to 

implement.  

2.3 Microwave-Enhanced Solid Propellant Burning Rate 

Plasma-assisted combustion is a promising technology to improve engine performance, 

increase lean burn flame stability68, reduce pollutant emission69 and assist low-temperature 

combustion70. A number of studies have employed microwaves for gas-phase combustion 

enhancement. Stockman et al.71 demonstrated microwave enhancement for a field below 

breakdown threshold by increasing flame speed in a laminar, premixed CH4/air wall stagnation 

flat flame. Moving to pulsed microwave systems, Michael et al.72 demonstrated efficient 

coupling of microwave energy to flame by using high peak power pulsed microwave fields.  

 

Figure 2.9  Illustration of proposed mechanisms for burning rate enhancement. Plasma kernel 

seeding occurs in regions of high local flame temperature (high free electron density) due to 

electron-neutral collisions and subsequently grows through the flame volume. Energy can be 

deposited through dielectric absorption to high temperature aluminum oxide features (oxide 

smoke and oxide cap) within aluminum droplet diffusion flames. Condensed phase heating can 

also contribute to the burning rate enhancement through dielectric absorption mechanisms. 

In prior work, we have demonstrated the use of alkali metal doping for efficient, 

moderate-field-strength microwave energy deposition to the flame, which results in significant 

combustion enhancement9. The mechanisms of microwave energy deposition in alkali-doped 

solid propellant enhancement are highlighted in Figure 2.9, reproduced from Barkley et al86. 
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Sodium can be easily ionized due to the high propellant flame temperature and low ionization 

threshold. In the investigations of microwave-enhanced propellant flame combustion, emission 

from sodium was observed with high-speed cameras and long-exposure spectrometers. To help 

determine the role of the sodium in promoting microwave energy absorption in propellant 

flame structure, more detailed information on the sodium distribution is required. Optical and 

laser-based techniques offer a promising method to infer ground-state sodium distribution with 

and without microwave field application with the goal of determining more precisely the 

mechanisms of burning-rate enhancement observed in these propellant flames with microwave 

illumination.  

2.4 Review of Optical Techniques for Atomic Sodium  

Optical techniques for measuring atomic sodium (Na) distributions have been 

investigated in a variety of combustion environments. Van Eyk et al.21 developed a quantitative 

planar single-photon laser-induced fluorescence technique providing time-resolved 

measurements and planar distribution of atomic Na released from a single coal particle. 

However, the significant scattering from soot leads to low signal-to-noise ratio. Weiland et 

al.74 applied one-photon excitation at 330 nm by detecting 818 nm to measure sodium 

concentration, where most of the photons relax by a resonant fluorescence emission. Hsu et 

al.73 designed a novel application of laser-induced breakdown spectroscopy (LIBS) to provide 

quantitative measurements of Na from burning of brown coal and pine wood. However, the 

LIBS measurement is at point measure and a complex correction is needed for signal trapping. 

In single-photon LIF in multiphase combustion environments, particle scattering and signal 

trapping are the issues that are often limiting.  

To avoid these problems, sodium two-photon LIF has been explored by Weiland et al.74 

and Allen et al.75, as shown in Figure 2.10, for applications in optically dense combustors with 
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alkali salt seeding. Weiland et al.74 reported two different two-photon excitation schemes: 3s-

5s and 3s-4d. For both excitation schemes, they found the dependence of the two-photon LIF 

signal on laser fluence did not show the anticipated slope of 2 when plotting the signal versus 

laser fluence on log-log axes. This was attributed to ionization loss (detected for both 

transitions), amplified spontaneous emission (ASE), and quenching to other states. ASE and 

ionization during two-photon absorption laser-induced fluorescence process can become 

significant since the high sodium concentration in flame and ionization threshold is exceeded 

with a third low energy photon. Moreover, they reported the ASE signal as independent of 

laser power down to 2 mJ/cm2, which was attributed to saturation of the excitation transition. 

They did not investigate excitation to the 3d state with a two-photon process. This process 

would have a direct fluorescent emission transition compared to the 3s-4d which they reported 

having relatively low quantum yield. Interestingly, they used a single-photon excitation of 3s-

4p and found very strong emission from the 3d-3p transition75. 

 

Figure 2.10  Energy-level diagram for atomic sodium, illustrating the excitation schemes: 

A,3p resonance line; B, C, two-photon excitations; D, E, single-photon ultraviolet excitation 

at 260 nm and 330 nm; Table shows normalized fluorescence signal intensities from different 

excitation schemes. 

This work explores single-photon excitation (3s-3p), two-photon excitation (3s-4d and 

3s-3d), and subsequent fluorescence in environments which are highly scattering and of 
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significant sodium atomic density in gas phase flames and solid propellant flames. These 

environments are the highest number-density sodium systems examined in the context of 

combustion, and present significant challenges due to the multiphase combustion environment 

and the high number density of atomic species. 

2.5 Theory and Rate Equation Modeling of Two-photon LIF   

Two-photon excitation techniques allow access to additional transitions as the quantum 

mechanical selection rules allow changes of angular momentum ∆𝑙 = 0, ±2 instead of the 

single photon selection rule of ∆𝑙 = ±1. Three promising two-photon excitation schemes (3s-

5s, 3s-3d, 3s-4d) and detection schemes (3d-3p and 3s-sp) are depicted on the energy level 

diagram shown in Figure 2.11. For these excitation schemes, the potential fluorescent detection 

photons are at 589nm, 818 nm, and 330 nm, as depicted in Figure 2.11. In considering the 

schemes for excitation, the experiments here utilized wavelengths easily accessible using the 

dye laser system (two-photon excitation at 578 nm, 602 nm, and 685 nm). For these, only two 

were examined in detail. The 3s-5s transition was investigated by Weiland et al., but not used 

here since the predominant signal generation was at 589 nm. In addition, the emission process 

is from a non-direct state and the potential for quantitative measurements would require 

detailed knowledge of the quenching and transition rate behavior leading to 589 nm emission. 

The 578 nm scheme is examined, but results in non-direct emission as well since the 4d-3p 

photon is outside of the easily detectable limit of the available imaging sensors. Finally, a new 

investigation of 3s-3d is carried out. Here the 3d state can emit a detectable photon directly. 
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Figure 2.11  Sodium energy level diagrams depicting two-photon excitation strategies from 

the ground state (3s) are indicated in the left panel. Possible detection wavelengths which are 

directly or indirectly populated are indicated in the right panel. 

In general, the smaller absorption cross-sections involved in multi-photon LIF 

techniques usually generate weaker signal than single-photon LIF techniques and therefore 

high power pulsed lasers are typically employed to increase the signal intensity level. However, 

the strong laser field generated by the lasers also results in additional nonlinear effects which 

complicate the interpretation of the signal. A good model is needed to help understand these 

nonlinear effects for multiphoton LIF techniques. A large amount of research has been done 

for the modeling of multiphoton processes to aid in the understanding of two-photon LIF, 

ionization, and ASE processes with the target of quantitative measurements for the targeted 

species. The measurements in this thesis provide data for validation of a sodium two-photon 

excitation fluorescence model taking into account these effects. 

Rate equation models can be used to represent the atomic system under consideration, 

as previously described by Amorim76,77 for atomic oxygen. For the atomic sodium system 

under consideration, a four-level system should be considered with the four states 

corresponding to the 3s (N1), 3p (N2), 3d (N3), and ionized (Ni) levels. In general, this system 

can be used for any atomic system. It involves a four-level system interacting with a laser 
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pulse. The laser pulse excites the target atom from the ground state (𝑁1) to the excited level 

(𝑁3) via two-photon absorption. Atoms in the excited state can either absorb another photon to 

be ionized, spontaneously emit a photon to proceed back to the intermediate state (𝑁2) or 

undergo quenching. Due to the two-photon excitation and high-lying excited state, amplified 

spontaneous emission is almost always prevalent in two-photon excitation systems. This has 

been examined for O atom, H atom, and N atom in both combustion and plasma systems57-61. 

The amplification of a stimulated emission wave can be considered for a given laser focusing 

geometry. Models exist in the literature for zero-dimensional, one-dimensional, and two-

dimensional geometries based on rate equation and Monte Carlo approaches. In this chapter, 

the rate equations are detailed that should be incorporated into such an analysis. Amorim et al. 

implemented a 1D numerical model for atomic oxygen and compared to experimental data78. 

The O atom model is implemented using a hyperbolic partial differential equation solver79 and 

the rate equation system is presented as the following: 

 

Figure 2.12   Illustration of two-photon LIF process.  
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𝑑𝑁𝑖

𝑑𝑡
=  𝑁3

𝜎3,𝑖𝜙𝑙

ℎ𝜐𝑙
                                                             (4) 

𝑁𝐿𝐼𝐹 =  𝑁3𝐴2,1                                                            (4) 

For this system of equations, the following parameters are used:  

𝑐 and ℎ: the speed of light and the Planck constant;  

𝜙𝑙: the radiance of the excitation laser pulse;  

𝜐𝑙 and 𝜐: the frequency of the pump laser and fluorescence; 

𝛼1,3 and 𝜎3,𝑖: the two-photon absorption cross section and photon ionization cross 

sections; 

𝑔𝑖(𝑖 = 1, 2, 3): the degeneracy of each level; 

𝐴: the Einstein A coefficients; 

Q: the collisional quenching rates of different states;  

Δ𝑣𝑠𝑒:  the linewidth of the ASE radiation, in this work, Δ𝑣𝑠𝑒 = 1 𝑐𝑚−1. In this 

system, gain narrowing and broadening of ASE radiation linewidth was not considered.  

Γ  is the overlap integral defined as Γ = ∫ 𝑔(𝑣) × 𝑓(𝑣)𝑑𝑣 with 𝑔(𝑣) and 𝑓(𝑣) 

representing the line shape function of the absorption transition and the ASE radiation. In this 

work, 𝑔(𝑣) and 𝑓(𝑣) were assumed to be Gaussian profile with the same linewidth, resulting 

in a constant Γ = 0.5. 𝐵3,2 is calculated through 𝐵3,2 =  𝐴3,2𝑐3 8𝜋ℎ𝑣3⁄  

In order to take account of the ASE propagation, both one-dimensional and two-

dimensional (Monte Carlo) simulations have included photon transport equations in the 

forward and backward directions which were solved simultaneously with the rate equations 

in each specific slices, considering the flux of photons from adjacent segments.  
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The solid angle formed, 𝐻 , 𝑇, and 𝐿 are the height, thickness and length of the simulation 

domain.  
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This model is only proposed in this thesis. But the goal is to compare the model and 

experimental data on fluence dependence of fluorescence, ASE, and ionization was collected. 

One final point is the potential need for an extension of this type of modeling for sodium. In O 

atom, where this was previously applied, the excited states are few and of high energy, so a 3-

level system was adequate. In sodium, because of the lower energies of the excited states, it 

may be necessary to model additional energy transfer processes. In particular, for plasma 

systems, energetic collisions may be sufficient to generate significant excited state populations 

of sodium atoms which may impact the assumptions of using a three-level system.  
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CHAPTER 3.    EXPERIMENTAL SETUP 

3.1 Setup Overview 

Due to the harsh environment present in propellant flames, laser-based combustion 

diagnostics have potential as non-intrusive, in-situ, and high resolution (temporal and spatial) 

measurement techniques. In this thesis, laser-induced fluorescence is applied to understand 

ground-state sodium distribution in microwave assisted, sodium-doped propellant flames. 

Experiments on sodium fluorescence were conducted in a sodium-seeded gas phase flame and 

in sodium-seeded composite propellant flames. The fluorescence excitation and detection 

schemes investigated are discussed and the premixed flame burner used for characterization is 

introduced. Details of one-photon and two-photon laser-induced fluorescence systems in a 

flame are given.  

The final two sections detail the propellant formulations and microwave systems used 

throughout the experiments. For solid propellants, the formulations and equilibrium 

calculations of sodium concentration and flame temperature are presented to estimate 

equilibrium sodium atomic concentrations. Finally, the apparatus used to deposit continuous-

wave microwave energy to the flame structure doped with alkali metal is presented, along with 

a description of the timing and simultaneous collection of atomic emission. 

3.2 Diffusion and Premixed Flame Burner 

For fluorescence characterization, a non-premixed diffusion flame and a premixed flat 

flame were used as shown in Figure 3.1. The non-premixed diffusion flame consisted of a 2-

inch outer co-flow with velocity-matched air and a 0.5-inch inner tube flowing 0.2 SLPM of 

natural gas with sodium seeding.  The premixed flat flame burner followed the design of 

Hartung et al80. with slight modifications to the burner surface due to fabrication limitations. 
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All burner parts were fabricated from brass, except a copper cooling loop which was brazed to 

the outer burner surface. The top plate consisted of a brass plate with 0.8 mm holes with an 

open area of ~35 percent.  A dimensioned drawing of the burner plate and assembly are shown 

in Figure 3.2. The modified diameter is still much smaller than the minimum quenching 

diameter for a CH4/air flame, and the steel wool in the original design was replaced with 2 mm 

glass beads to avoid corrosion by the seeded solvent. 

 

Figure 3.1   (a) Non-premixed diffusion flame with an air co-flow; and (b) Premixed flat flame 

burner with sodium-seeding in the central flow via atomized methanol/NaNO3 solution. 

 

Figure 3.2   Premixed flat-flame burner. (a) body design, (b) modified top plate design 
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The premixed flame was run over only the central portion of the burner with 1 standard 

liters per minute (SLPM) of natural gas and 3 SLPM of air. Sodium was seeded into the flames 

using a droplet seeder (TSI Aerosol Generator 3760) using a sodium chloride in water or 

sodium nitrate in methanol solution at three different concentrations. Flow rates for the gas 

were metered with Alicat mass flow controllers with an accuracy of 1%, with the calibration 

of MesaLabs Defender 530+, and the volume flow rate of the aerosol seeder was measured by 

Cole-Parmer flow meter. To match the propellant formulation, sodium nitrite was seeded into 

gas-phase flame. The estimated sodium concentrations are listed in Table 3.1 based on the 

metered flowrates used as inputs to the NASA Chemical Equilibrium with Applications (CEA) 

solver.  

Table 3.1  Flow rate of gases and predicted sodium concentration in flame. 

Burner 

Natural 

Gas 

(SLPM) 

Air 

(SLPM) 

Solvent/NaNO3 

concentration (g/L) 

Predicted equilibrium 

Na concentration (ppm) 

Diffusion 0.2 3.2 Methanol, 1 g/L 500 

Premixed 0.5 5.6 Methanol, 10 g/L 4000 

Premixed 1 5 Water, 25 g/L 6000 

 

3.3 Laser-induced Fluorescence System   

Laser-induced fluorescence has been a prominent laser diagnostic tool for targeting 

combustion-relevant species and products since the advent of the pulsed laser. In LIF, the 

frequency of a laser beam is tuned to a specific electronic transition of an atom or molecule. 

The targeted species is excited by absorption of a laser photon to a higher energy state. The 

excited-state photons decay back to the ground state by radiative (spontaneous emission) or 

nonradiative decay. This spontaneous emission process is classified fluorescence, and the 
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signal is typically detected by photosensitive elements. Concentrations and temperatures can 

be determined based on the LIF signals. Planar laser-induced fluorescence is the two-

dimensional variant of this technique.  

Sodium LIF has been investigated in a variety of combustion and aerodynamic 

environments due to the easy accessibility of the sodium D line transition and its extremely 

high absorption cross section. Although sodium one-photon LIF has been successfully used to 

measure the velocity88, temperature89, and concentration21 of seeded gaseous jets, they often 

require corrections in high optical density environments due to the resonant excitation and 

collection of the fluorescence signal. As discussed in Chapter 2 for the one-photon absorption 

LIF in sodium, the easiest transition to access (D-line) has a resonant detection wavelength 

which is the same as the excitation wavelength. For atomic systems with high density, this 

leads to the re-absorption and re-fluorescence of LIF photons before reaching the edge of the 

flame and the detector. The first sub-section will describe some initial characterization with 

the one-photon LIF system.  

The high optical density caused by the sodium concentration and the inability to 

distinguish between the wavelength of laser scattering from particles and the fluorescence 

signal in the solid propellant flames made one-photon LIF too difficult to apply. Two 

alternative methods of using two-photon absorption LIF with emission at different wavelengths 

will be explored in this thesis. These multiphoton processes are also subject to amplified 

spontaneous emission (ASE) and ionization losses that can complicate interpretation of the 

signal. The second section of this part will discuss details of two-photon LIF experiments setup 

to understand the relationship between fluorescence, ionization, and ASE. 
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3.3.1 Single-photon Excitation LIF 

The nanosecond LIF system is shown in Figure 3.3. A 10 Hz Spectra-Physics Quanta-

Ray Nd:YAG laser, ~200 mJ/pulse at 532 nm, was used to pump a Continuum ND 6000 dye 

laser with Exciton Rhodamine 610 for the 3s-3p excitation of sodium (589 nm) at 

approximately 40 mJ/pulse. A portion of the dye laser output (10%) was used to monitor 

wavelength with a Highfinesse Wavemeter WS-6. The remainder of the beam (90%) was 

focused into the flame. A +125 mm focal length lens was used to focus the laser beam, and a 

+400 mm plano-convex cylindrical lens was also used to generate a sheet with a thickness of 

1.4 mm (10/90 width) and 10 mm height. A fast-gated intensified-CCD camera (Princeton 

Instruments, PI-MAX 2) with a 55 mm, f/1.2 Nikon objective lens was set orthogonal to the 

laser sheet to collect the fluorescence signals. A 590 nm bandpass filter (Asahi Spectra, 

ZBPA590, FWHM: 11 nm) was used to detect 589 nm fluorescence emission. A digital delay 

generator (Stanford Research Systems, DG-535) was used to synchronize the laser and camera 

systems.  

 

Figure 3.3  Schematic of experimental setup for nanosecond pulsed laser one-photon laser-

induced fluorescence showing the dye laser pumped by the second harmonic of Nd:YAG laser, 

the flame and shroud, sheet-forming optics, and the ICCD. Symbols indicate the following: 

SHG-second harmonic generation; WM-wavemeter; TFP-thin film polarizer; ICCD-

intensified CCD; WP-wave-plate.   
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3.3.2 Two-photon Excitation LIF 

Two-photon laser-induced fluorescence has the advantage of avoiding fluorescence 

trapping or re-emission as compared to single-photon excitation. As discussed in Chapter 2, 

Weiland et al. reported strong ionization signals based on nanosecond two-photon excitation 

transitions of optically dense sodium-doped flame. Three promising excitations and 

fluorescence detection were laid out in Chapter 2. In this thesis, 3s-4d excitation (578 nm) will 

be investigated, but non-direct excitation of the original states of the observed 589 nm and 818 

nm emission complicate the analysis of fluence dependence without a kinetic model including 

collisional activation and deactivation of the relevant states. The 3s-3d (685 nm) two-photon 

excitation, which has a direct fluorescence emission 3d-3p (818 nm) will be presented, which 

Weiland et al.61 did not report. The laser system is the same as for one-photon experiments 

(Nd:YAG-pumped dye laser) with a change to a different Rhodamine 610/640 mixture for two-

photon 3s-4d excitation at 578 nm, and Rhodamine 640 for 3s-3d  two-photon excitation at 

685 nm. A summary of the dye mixtures and performance for the three excitation wavelengths 

is given in Table 3.2. For the detection of 818 nm fluorescence imaging, a 1-inch 820 nm 

bandpass filter (Thorlabs, FB820-10) was placed before the objective lens. Both sodium-doped 

premixed flames and sodium-doped propellant flames were investigated by two-photon PLIF, 

with results presented in Chapter 4.   

Table 3.2  Dye mixture for the three wavelengths excitation wavelength of atomic sodium 

LIF. 

Excitation Dye 
Concentration (mg/mL) 

Osc and Amp 

3s-3p (589 nm) Exciton Rhodamine 610 120.6 and 51 

3s-4d (578 nm) 
Exciton Rhodamine 610/640 

mixture 
21.3/37.8 and 10.6/18.7 

3s-3d (685 nm) Exciton LDS 698 75.6 and 18.9 
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For two-photon excitation, a significant degree of ionization and amplified spontaneous 

emission are expected due to the high sodium levels present in these flames and the low 

ionization threshold for sodium. Weiland et al.61 reported data on these, but it is necessary to 

replicate these results for the range of interest in sodium-doped propellant flames and for the 

additional two-photon scheme that we investigate for the first time. The setup for measurement 

of correlation between ASE, ionization, and fluorescence of two-photon 685 nm excitation is 

detailed in Figure 3.4. The dye laser energy is controlled by a polarizer and a plano-convex 

spherical f=+200 mm lens was used to focus the laser beam 10 mm above the burner surface. 

A portion of laser pulse was picked off with a thin glass slide and sent to the photodiode to 

record the laser energy fluctuations.  The integrated photodiode signal through the boxcar was 

calibrated against a power meter. A photomultiplier tube (PMT, Hamamatsu, H10722-20) with 

a high voltage supply was used for detection of the fluorescence emission with collection by a 

+60mm plano-convex spherical lens. An 820 nm ultra-narrow filter (Alluxa 820-2006) and 

RG780 long pass filter were placed before the PMT. To collect ASE signal from the burner, a 

dichroic mirror (Semrock, FF801-Di02) was used to pass the excitation laser and reflect the 

818nm ASE. The reflected ASE beam (with focusing parameters close to that of the pumping 

beam) was collected onto a photodiode (Thorlabs, DET36A) with an 820 nm bandpass filter 

(Thorlabs, FWHM 10 nm) using a +150 mm plano-convex spherical lens.  An ionization probe 

was constructed similar in design to that developed by Cool et al. to detect laser-generated 

ionization. The probe was set ~ 2 mm from the laser focus in the premixed flat flame.  Single-

shot signals from the photodetectors for ASE, laser energy, fluorescence, and the ionization 

were collected for a range of laser energies using a Stanford Research Systems 250 Boxcar 

Integrator and sent to an NI DAQ (BNC2110) board to be recorded by a National Instruments 
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data acquisition system (DAQ). The boxcar was triggered at 10 Hz, and consists of gated 

analog integration. The DAQ board was used to read the DC signal level corresponding to each 

channel at the laser repetition rate of 10 Hz (See Appendix A). 

 

Figure 3.4  Schematic of experiment showing two-photon excitation experiment to monitor 

shot-to-shot variation in laser energy, fluorescence by PMT, ASE and ionization with a Boxcar 

Integrator 

 

Figure 3.5 Ionization detection probe adapted from Cool et al90. 

A schematic of the ionization detection probe is shown in Figure 3.5. The probe 

consists of an anode of a 0.8 mm diameter spherical bead of platinum on the end of a piece of 

0.4 mm diameter platinum wire. A ceramic insulator is used to shield the anode except for the 

bead end, and the cathode consists of another platinum wire coiled around the insulator and 

enclosed by another piece of insulator. The signal was detected with a Tektronix MDO3054 
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oscilloscope and a 100x attenuating voltage probe (Tektronix P6139B, 10M). Acquisitions 

were typically AC coupled to minimize the contribution from the flame ionization signal (a 

constant voltage offset). For the boxcar measurement, a 1 kHz high pass filter (100 nF and 1.5 

k) was used to replace the voltage probe.  

3.4 Propellant Formulation 

A range of composite propellant formulations varying the amount of aluminum, 

ammonium perchlorate (AP) and Sodium nitrate (NaNO3) dopant were used for combustion 

experiments. The propellant formulation, shown in Table 1, consisted of aluminum (~ 35 µm, 

Valimet-H30), bimodal AP (200/90 µm, 80/20 wt.% Firefox Chemicals), NaNO3 (Firefox 

Chemicals), and hydroxyl-terminated polybutadiene (HTPB). Details on propellant 

manufacturing process are given by Barkley et al9. In short, NaNO3 was milled first and mixed 

with binder/AP at room temperature for three hours. And strands were cured for seven days at 

60 C. Propellant adiabatic flame temperatures were simulated in Cheetah81  equilibrium solver 

as reported in Table 3.3.   

 

Table 3.3  Propellant formulations 

 Propellant Compositions  

Formulation Name 
NaNO3 

(<75 µm) 

AP 

(200/90 µm) 

Al 

(35 µm) 
HTPB 

Tflame, ad 

(1 atm), (K) 

Al-AP-NaNO3 3.5% 3.5 70.5 14.5 11.5 3037 

Al-AP-NaNO3 1.0% 1.0 72.6 14.5 11.9 3029 

AP-NaNO3 3.5% 3.5 84.9 0 11.6 2711 

AP-NaNO3 1% 1.0 87.1 0 11.9 2717 
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Single-photon and two-photon excitation of Na were applied to sodium-doped 

propellants without microwave coupled condition. The diagnostic system is consistent with 

Figure 3.3 (Single photon one). Instead of a flat flame burner, a ~3 cm height propellant strand 

was set in a transparent box and a vent was used to ventilate the product gases. For these 

studies, the ICCD camera was used with zero gain.  

3.5 PLIF in Microwave Systems 

The main test apparatus for microwave-assisted solid propellant burning experiments 

consisted of a basic microwave system and laser setup as just described. In addition to the 

fluorescence imaging, a high-speed camera was synchronized to take the images to indicate 

the burning rate, sodium emission, and particle emission. Data from the microwave system 

was acquired with an oscilloscope. 

3.5.1 Microwave System 

The configuration of the rectangular microwave resonant cavity assisted solid 

propellant burning is similar to that used by Stockman et al71. It has the advantage of single 

mode operation, the ability to impedance match to the load, high cavity quality, and optical 

access for laser introduction and imaging. The core components of the experimental apparatus 

consist of the magnetron, waveguide sections, and test section. An 870 W, 2.46 GHz 

continuous wave (CW) magnetron (National 2M107-825) launched into a WR284 waveguide 

cavity and propagated in a TE10 mode through a waveguide transition to connect with a 

WR430-scale test section (modified cavity design in appendix B). The forward and reflected 

power were measured with a Schottky diode (Pasternack PE8003) and signals were recorded 

on an oscilloscope (Tektronix MSO 70404C).  

The test section consisted of a custom WR430 cross section waveguide test section. 

The test section had optical access for the laser beam to cross at orthogonal angles to two 
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oppositely set viewing windows. In order to minimize the loss and leakage of the microwave, 

aluminum wireframe grids were set in the cavity walls with a small opening (5 mm). This size 

is insufficient to attenuate the microwave and avoid any propagating microwave mode. To 

prevent exposure of microwave components to corrosive propellant combustion exhaust, the 

test section is modified by insertion of two 19.81 mm thickness polytetrafluoroethylene (PTFE) 

blocks as purple in Figure 3.6. Within the test section, propellant strands were ignited by a 

two-second duration, 2-watt blue diode laser from the top. Smoke, generated by solid 

propellant burning, was evacuated from the cavity by an air co-flow produced by cyclone 

vacuum application.  

 

Figure 3.6  Microwave waveguide resonator. The microwave system consists of (A) a 

magnetron launching into WR284 waveguide, (B) a circulator, (C) directional coupler with 

Schottky diodes, (D) a stub tuner, (E) a WR284 to WR430 transition section, (F) test section 

for propellant burning with polytetrafluoroethylene (PTFE), (G) a sliding short section. The 

colored blocks in the test section (F) indicate the place of Teflon blocks to prevent corrosive 

products from reaching the sensitive components of the cavity. 

 

The cavity was impedance matched to a half-length propellant strand (~1cm) by stub 

tuning and achieve a high quality factor (Q-factor). COMSOL Multiphysics 5.0 was used to 

simulate the unloaded cavity and help select position of the sliding short distance. A numerical 

simulation of electric field strength within the test section with PTFE, as shown in Figure 3.7, 
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with an input port (TE10 mode, 1 kW input power).. For a microwave resonator, field energy 

is stored and this is typically quantified by determining the quality of the cavity. This is defined 

as the frequency multiplied by the ratio of the field energy stored in the cavity over power loss 

rate from the cavity. The theoretical quantification of resonance for a microwave cavity is the 

defined as: 

𝑄 = 𝜔
𝑊

𝑃𝑙𝑜𝑠𝑠
=

𝜔

∆𝜔3𝑑𝐵
 

where 𝜔 is the angular frequency of the microwave radiation, 𝑊 is the energy stored within 

the cavity, and 𝑃𝑙𝑜𝑠𝑠 is a measure of the energy lost to the load and ohmic heating of the walls. 

The right-hand side of the equation provides an experimentally obtained parameter from the 

VNA to calculate Q, where ∆𝜔3𝑑𝐵 is the 3 dB width of the cavity resonance at the microwave 

frequency. To measure the Q-factor of the unloaded microwave, a vector network analyzer 

(VNA, Anritsu MS46322A Shockline) with APC-7 calibration kit was used to determine a Q 

of ~90. 

 

Figure 3.7   (a) Microwave E-field strength simulation results using COMSOL; (b) Resonant 

wavelength Quality-factor measurements of WR 430 cavity using a Vector Network Analyzer. 
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3.5.2 PLIF Diagnostics 

The wavelength for two-photon excitation of the 3s-3d transition of sodium (685 nm) 

was generated as described in section 3.3.2. A combination of a -300 mm cylindrical lens and 

a + 200 mm plano-convex spherical lens was used to generate a laser sheet to go through the 

slot of the microwave test section as in Figure 3.8 (a). Due to the cavity design, the camera 

cannot be set orthogonally to the laser sheet to collect fluorescence intensity. 

In order to take the emission and fluorescence images simultaneously, a 2-inch Pellicle 

beamsplitter (Thorlabs, R/T = 45/55) was used as shown in Figure 3.8 (a). The transmission 

(fluorescence) was detected by a Princeton ICCD fast-gated camera (gain at 100) at 5 Hz and 

the reflection was collected by a Photron SA-X2 high-speed camera at 1 kHz or by backlit 

imaging using Chameleon CCD camera (FLIR/PointGrey) at 10 Hz. For the detection of 818 

nm fluorescence images, an 820 nm ultra-narrow bandpass filter (Alluxa) and RG780 long 

pass filter (Thorlabs) were placed before the 105 nm Nikon lens and 96 mm extension tubes. 

For the detection of emission imaging, a 589 nm bandpass filter and an RG610 long pass filter 

(Thorlabs) were placed before a 105 mm Nikon lens with 84 mm extension tubes. 

 

Figure 3.8   (a) Sodium two-photon PLIF setup with the microwave test sections simultaneous 

high-speed imaging of sodium emission. (b) A timing diagram showing the synchronization 

and modulation of the microwave field.  
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To time and synchronize the experiment, a digital delay generator (Berkeley 

Nucleonics Corporation, Model 575) was externally triggered by a master clock (Stanford 

Research System DG535), which was running the Nd:YAG laser Q-switch. A copy of the 

trigger to the PI camera was used to trigger a second delay generator (BNC Model 577), which 

is used to synchronize the high-speed camera, trigger ignition, and modulated microwave. The 

full sequence is depicted in Figure 3.8 (b), where a total sequence spans 15 seconds. Initially, 

a 2W blue diode laser was activated for 2s to ignite the propellant strands. After one additional 

second (allowing for steady burning), the high-speed camera and microwave were activated, 

and the microwave was modulated at 1 Hz and different duty cycles in experiments. The 

forward and backward-directed microwave power in the cavity were monitored via Schottky 

diodes (Pasternack PE8003) on a Tektronix MSO70404C oscilloscope. The diodes were 

calibrated using a power meter (Keylight, N1912A, P-series). 

A series of experiments were conducted varying the composition and comparing the 

case of no applied field and applied field, with the goal of determining the role of the atomic 

sodium distribution in the propellant burning rate enhancement with the application of high 

strength microwave fields. Burning rate enhancements were measured for each strand, and 

backlit imaging allows for better comparison with the Na fluorescence images. Sodium 

fluorescence images were taken for a range of microwave field duty cycle and propellant 

compositions, as laid out in Table 3.3.  
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CHAPTER 4.    RESULTS AND DISCUSSION 

This chapter describes a series of experimental results of one-photon and two-photon 

laser-induced fluorescence in sodium-doped flames. Despite the potentially straightforward 

analysis of single-photon excitation, there are several drawbacks: the detection and excitation 

wavelengths are resonant, and fluorescence trapping is expected to be significant in high 

sodium number density flame environments. As an alternative, two-photon excitation schemes 

are examined to avoid significant fluorescence trapping and to allow time-gated and optically 

filtered detection away from the excitation wavelength. Results from two schemes (3s-4d and 

3s-3d) of two-photon excitation fluorescence will be shown in this section. In addition, single-

photon and two-photon excitation were applied to propellant with and without microwave 

application to analyze the ground state sodium distribution in the harsh environmental 

conditions. 

4.1 Laser-induced Fluorescence in Flame 

To provide useful data and direct comparison of the single-photon and two-photon 

excitation schemes, the single-photon 589 nm excitation and two-photon 578 nm excitation 

were investigated in a sodium-doped non-premixed diffusion flame. In the gas phase 

environment with significant seed densities, the effects of signal trapping of 589 nm excitation 

are significant, and the prospect of measurements using single-photon excitation in multiphase 

flames is low. A direct comparison of two-photon 578 nm and 685 nm excitation is carried out 

on a sodium-doped flat flame burner to help determine optimal ranges of laser fluence while 

considering losses due to amplified spontaneous emission and ionization.    
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4.1.1 Single-photon Excitation  

The single-photon, resonant excitation of atomic sodium at 589 nm with detection at 

the same wavelength is discussed first. The laser beam was focused through the sodium-doped 

non-premixed diffusion flame. The ICCD camera gate was 20 ns exposure and started 

approximately 8 ns after the laser excitation pulse. At these sodium densities, several features 

are notable in Figure 4.1. The time-delayed fluorescence signal shows significant attenuation 

along the direction of laser propagation, due to the fluorescence trapping, because the focused 

beam size is around 300 µm.  

 

 

Figure 4.1  589 nm single-photon excitation fluorescence imaging detection at the resonant 

wavelength, where the focused beam is 300 µm in diameter.  

In addition, the linearity of the single photon emission at 589 nm was examined by 

varying the laser irradiance through the use of a waveplate and polarizer to attenuate the pump 

beam prior to the dye laser. The fluence dependence of the resonant emission is shown in 

Figure 4.2. Saturation occurs at a fluence of approximately 2104 mJ/cm2, similar to values 

reported by Van Calcar et al84. As mentioned previously, the fluorescence trapping behavior 

of the single-photon excitation inhibits the quantitative comparison of sodium concentration.  
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Figure 4.2  Fluorescence intensity versus laser fluence showing fluorescence saturation at 

~2104 mJ/cm2. Bars indicate one-standard deviation range. 

4.1.2 Two-photon Excitation 

 

Figure 4.3 Nanosecond two-photon 578 nm laser-induced fluorescence with detection at (a) 

589 nm and (b) 818 nm with regions for signal binning indicated by the outlined areas. The 

fluence dependence (c) of both emission wavelengths is shown with both normalized to the 

peak value. Bars indicate one-standard deviation.  

Two-photon excitation of the 3s-4d transition (578 nm) was investigated as an 

alternative approach to minimize fluorescence trapping and evaluate the prospects for 

quantitative sodium concentration measurements. Due to the nonlinear process of multiphoton 

excitation, curves are often presented on a log-log plot, where constant slope indicates power-

law behavior. For two-photon fluorescence processes, this might be expected to approach a 
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value of 2, with deviations explained by non-direct fluorescence emission, amplified 

spontaneous emission (ASE) losses, quenching processes, and ionization losses. The fluence 

dependence of the fluorescence, collected at a wavelength of 589 and 818 nm, is shown in 

Figure 4.3(c). At lower fluence, both exhibit power-law type behavior, but roll off at fluences 

of < 10 mJ/cm2. The spatial distributions of both appear similar, and any non-uniformity may 

be accounted for by variations in the excitation laser focusing. 

In order to make a direct comparison between the single- and two-photon excitation 

imaging in the doped sodium non-premixed diffusion flame, similar focusing was used in order 

to assess the role of beam attenuation and fluorescence trapping effects. Background-

subtracted images for single-photon and two-photon excitation at 589 nm (3s-3p) and 578 nm 

(3s-4d) are shown in Figure 4.4 (a) and (b). The two laser systems used near-identical focusing 

and the fluorescence images are normalized to the peak signal across the shown in Figure 4.4 

(c) for comparison. From this, the two-photon signal shows a much sharper gradient with 

fluorescence signal restricted to the excitation volume. In contrast, the single-photon excitation 

shows significant broadening outside of the laser focal volume which is indicative of 

refluorescence or signal trapping due to the resonant excitation. For comparison, the full-width 

half maximum (FWHM) of the fluorescence profile from single-photon excitation is 1800 µm 

and the FWHM of the two-photon absorption laser-induced fluorescence is 400 µm. The laser 

focusing had a beam width of ~300 µm for both cases, indicating that the two-photon width is 

exhibiting no significant signal trapping. From this, it is clear that the two-photon excitation 

has greatly reduced fluorescence trapping, even for the 589 nm transition. This is interesting 

to note, since the ground state population is the same in both cases, and one might expect to 

see reabsorption effects on 589 nm emission from either process.  
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Figure 4.4 Normalized, background subtracted images of fluorescence from the 3p-3s 

transition at 589nm for (a) one-photon (589 nm) excitation and (b) two-photon (578 nm) 

excitation with similar laser focusing. The dashed line indicates the locations for profiles 

across the laser focus in the fluorescence images, as shown in (c). The single photon excitation 

exhibits significant broadening due absorption and refluorescence, while the width of the 

fluorescence signal from 578 nm corresponds closely to the excitation beam width. 

Considering the level of multiphoton ionization resulting from the two-photon 

excitation, an ion probe was employed similar to that developed by Cool et al.90, as shown in 

Chapter 3.3. The signal was acquired with a Tektronix MDO3054 oscilloscope and a 100x 

attenuating voltage probe (P6139B, 10M). Acquisitions were typically AC coupled to 

minimize the contribution from the flame ionization signal, as the measure DC voltage of 1.5 

V is much higher than photoionization signal of ~0.5 V. A measured voltage waveform is 

shown in Figure for two-photon excitation at 578 nm with a fluence of 16.7 mJ/cm2. 

Wavelength scans for two different laser fluences of 1.4 mJ/cm2 and 16.7 mJ/cm2 are shown 

in Figure4.4. Both the peaks (black and red) are for 578 nm excitation (on-resonant ionization). 

For the low fluence case, the laser-induced ionization is absent when tuning far from the 

resonance, while significant REMPI signal is collected on-resonance. For the high-fluence 

case, the off-resonant signal is significant, made evident by the much larger spectrum width 

and the baseline at a signal of 5 V-μs. At the peak, the signal increases by a factor of ~4. This 

can be compared to the low fluence signal ratio on- and off-resonance of ~60. In both cases, 
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the on-resonance ionization is significant and may represent a significant loss to the 

fluorescence yield. 

 

Figure 4.5 Ionization single shot signal in premixed flat flame, 578 nm two-photon excitation, 

obtained with the ionization probe.  

 

Figure 4.6 578nm wavelength scan at two different laser fluences, 16.7 mJ/cm2 (black) and 

1.4 mJ/cm2 (red). At low fluence, the on-resonance ionization signal is strong, while there is 

little laser-induced ionization off-resonance. 

Examining the 818 nm fluorescence emission of 578 nm excitation, the detected 

fluorescence does not originate directly from the excited 4d state. Instead, the 818 nm emission 

originates from the 3d state and relies on collisional transfer and non-radiative mechanisms for 

excitation following the two-photon pumping to the 4d state. Consideration of these processes 

may require a model including collisional and non-radiative transfer effects to accurately 

capture the dynamics and to predict yields for the 818 nm emission. 
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An alternative approach was identified and tested, with the same detection wavelength 

to test the potential for improved signal yields and more direct analysis of the involved 

processes. Two-photon 685 nm excitation of the 3s-3d transition leads to an excited state which 

is detectable by fluorescence at 818 nm. Instead of the indirect population for 578 nm 

excitation, for this scheme the 685 nm excitation leads to a direct emission of detectable 

photons.  The 685 nm and 578 nm two-photon excitation schemes were tested on the premixed 

flat flame with NaNO3/methanol seeding. Fluorescence at 818 nm was detected and is shown 

on a log-log scale plot in Figure 4.7, where 685 nm excitation shows significantly stronger 

signal levels than 578 nm, which could be caused by the direct fluorescence emission from the 

3s-3p state. In addition, the noise floor for the 685 nm excitation is much higher, and exhibits 

less non-linearity – a potential sign of saturation of the transition at lower fluences. 

 

Figure 4.7 Nanosecond two-photon 578 nm (red) and 685 nm (black) excitation with detection 

at 818 nm for both. The fluorescence from 685 nm excitation has stronger signal level 

compared with 578 nm excitation.  

For further understanding the relationship between laser energy, fluorescence, 

ionization and amplified spontaneous emission, 685 nm excitation was monitored in the 

sodium-doped flat flame burner. During these experiments, fluorescence (collected with photo-
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multiplier tube), ionization level (detected by ion probe) and amplified spontaneous emission 

(photodiode sensors) were acquired with a boxcar integrator at 10 Hz rate. Due to the limited 

number of the boxcar channels, each pair of the signals were taken simultaneously while 

monitoring the laser energy on a shot-to-shot basis. A sample ASE signal with the boxcar 

integration region shown in the outlined box is shown in Figure 4.8. 

 

Figure 4.8 Single shot oscilloscope trace from amplified spontaneous emission at 818 nm with 

two-photon excitation at 685 nm. The boxcar integrator was set to a region corresponding to 

the red box, with analog gain set to avoid saturation of the ASE signal on the integrator.  

Figure 4.9 indicates for 685 nm two-photon excitation, the fluence dependence of the 

818 nm fluorescence, ionization level, and the amplified spontaneous emission signals. The 

trend for fluorescence with increasing fluence is similar to that shown before. Even at the lower 

range of fluences shown in this figure, the ionization level is already significant. This can be 

attributed to the strong cross-section for electronic excitation and the low-lying ionization state 

which would result in a probable 2+1 REMPI process. This designation corresponds to the 2 

photons resonant with the 3s-3d transition and 1 additional photon required to reach the 

ionization threshold. This significant ionization behavior for sodium was noted by Weiland et 

al76. The high levels of sodium present in the seeded flames also result in significant ASE 
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effects, although the lowest measured range of fluence shows behavior very close to a 

threshold. The ASE signal variation with fluence has a general increasing trend, but there is a 

significant amount of scatter for every laser fluence studied. This can be attributed to the 

stochastic nature of the ASE wave building up, and potentially could be accounted for by a 

strong backward-directed ASE signal which is not monitored. One outcome of these 

characterization of the fluence dependence on signals is to better choose an optimal fluence for 

propellant experiments. The propellant flame burns last only seconds, so a thorough 

characterization of fluence dependence is impossible. Improved understanding of the 

fluorescence, ionization and ASE with laser fluence could help chose the right laser energy to 

maximize fluorescence yield and reduce the ionization and ASE losses. During this study, to 

achieve significant signal levels of fluorescence signals, ~40-50 mJ/cm2 was chosen.  

 

Figure 4.9 685 nm two-photon excitation of the correlation between laser energy to 

fluorescence (818 nm), ionization, and amplified spontaneous emission (ASE). The NaNO3 

concentration was 25 g/L in the water solvent.  

4.2 LIF in Propellants Flame 

To effectively image the sodium atomic concentration in the propellant flame, there are 

several important considerations. First, the environment is highly scattering and the high 

temperature particles and droplets in the flame environment can interfere with particle gray 

body emission. In addition, the doping levels of sodium nitrate used in these propellant 
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formulations are significant and may result in fluorescence trapping and beam attenuation. 

Single-photon and two-photon LIF were used to detect the sodium-doped propellant without 

microwave first. In order to examine the spatial homogeneity of ground state atomic sodium 

during microwave-enhanced propellant burning, two-photon excitation PLIF at 685 nm was 

applied.  

4.2.1 Without Microwave 

4.2.1.1 Single-photon Excitation 

 

Figure 4.10  589 nm single-photon excitation and 589 nm fluorescence of 3.5% sodium-

doped aluminized propellants, normalized by the peak value and log scaling displayed on a 

logarithmic scale showing, strong particle scattering, attenuation, background emission and 

re-fluorescence. 

Sodium D1 line (589 nm) single-photon laser-induced fluorescence was investigated 

briefly in a sodium-doped propellant flame. A fast-gated ICCD camera with a short bandpass 

filter was used to capture the images, where the exposure is 20 ns duration. In these burns, 

there is evidence of strong particle scattering at the resonant excitation/detection wavelength, 

sodium background emission, and fluorescence trapping as demonstrated in Figure 4.10. The 

laser tuned to 589 nm was focused to a line width 300 µm through the 3.5% NaNO3 doped, 

aluminized propellant flame from left to right, and the fluorescence was detected at the 

resonant wavelength of 589 nm. Strong particle scattering is evident in Figure 4.10 at location 
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(1) from aluminum particles or agglomerate, and the laser line fluorescence trapping could be 

noticed clearly in the region (2). In this case, the scattering is so strong that it shows up clearly 

throughout the images as scattering takes off additional surfaces. Because of these 

complications, single-photon resonant laser-induced fluorescence is ill-suited for 

measurements in the multiphase propellant combustion environment.  

4.2.1.2 Comparison of One-photon and Two-photon LIF in Propellant Flames  

To avoid particle scattering interference and signal trapping effects, two-photon 

excitation has already shown advantages in the sodium-doped flame conditions. Investigation 

of 578 nm and 685 nm excitation in propellant flames are presented in this section. Based on 

the results from the gas phase sodium-seeded flame, a fluence for the operation was chosen 

based on the data amplified spontaneous emission, ionization, and fluorescence in section 

4.1.2.  

The excitation at 578 nm showed promising results in gas phase flame testing, so initial 

experiments examined burning in sodium-doped propellant flames. A summary result from a 

3.5% NaNO3, aluminized strand burn is shown in Figure 4.11(a). The image is shown on a 

logarithmic scale to highlight the total dynamic range in the image. The image quality is far 

better than the case of the single-photon resonant excitation, but there are strong interferences 

from particles in multiple locations which are comparable to the background sodium 

fluorescence level. A profile along the white line shows a slice through a region with few 

particle interferences. The signal-to-noise ratio (SNR), defined as the mean signal level in the 

highlighted box divided by the standard deviation of the signal over the same area in the image 

(SNR = μ/σ) was approximately 10 for the case shown in Figure 4.11(a).  

The second two-photon excitation scheme considered was excitation at 685 nm for the 

3s-3d transition. Unlike the 3s-4d excitation, the 3d state has a detectable, directly-emitted 
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photon at 818 nm. Due to this direct access to the excited state of the detectable photon, signal 

levels were anticipated to be significantly higher than the two-photon 578 nm excitation. The 

fluorescence imaging result in a similar propellant burn and fluence level of 55 mJ/cm2 is 

shown in Figure 4.11 (b). The image quality is superior, with an SNR of 112 over the 

highlighted box. Again, the signal quality is shown by plotting the signal on a log-scale along 

a vertical line in the image, shown in the right panel. The small jump in signal in the line plot 

is due to a particle interference. In addition, the signal quality and rejection of background 

particle level were superior. This scheme (3s-3d excitation at 685 nm; detection of 3d-3p at 

818 nm) offers the possibility of sodium atom mapping in high Na density, highly scattering 

environments such as aluminized composite-propellant flames.  

An additional consideration is the loss due to ASE on the 818 nm fluorescent emission. 

A photodiode was placed after the laser sheet passed through the test section and a dichroic 

beamsplitter and bandpass filter were used to ensure only 818nm light was collected. 

Particularly at high dopant levels, ASE was observed even at fluences which did not exhibit 

any detectable gas phase flame ASE. The presence of ASE on such strong oscillator strength 

transitions (alkali atoms) is likely unavoidable at these very high atomic concentrations. No 

signal depletion in the fluorescence images was evident in the test burner (at a lower 

concentration), but these effects have not been quantified. Although particle interference is 

present, the scheme offers the potential for qualitative mapping of the atomic sodium 

concentration. To reduce the blackbody emission, an ultra-narrow (FWHM 2nm) bandpass 

filter was applied to detect 818 nm fluorescence excited by 685 nm within microwave 

condition. Burns with aluminum content but no sodium dopant exhibit signal levels which are 

on the order of ~200 to 300 counts – well below the observed signal levels from TALIF 
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excitation at 685 nm. As a result, any strong signal observed in the fluorescence images is 

attributed to the presence of sodium. 

 

 

Figure 4.11  Comparison of 578 nm (3s-4d) and 685 nm (3s-3d) two-photon ground state 

sodium fluorescence of 3.5% NaNO3, aluminized composite propellant burning. Both are in 

natural log scaling. (a) 578 nm excitation at a fluence of 52 mJ/ cm2; (b) 685 nm excitation at 

fluence of 55 mJ/ cm2. 

As discussed in Chapter 2, information about the propellant flame structure is important 

to understand the various mechanisms of propellant combustion. Based on the advantages of 

685 nm two-photon laser-induced fluorescence discussed above, this excitation scheme was 

used for fluorescent imaging of the sodium distribution in a number of propellant flame 

formulations and burns. Figure 4.12, shows sodium-doped propellant flame structure of 818 

nm fluorescence emission for a 1% and 3.5% NaNO3 dopant in the aluminized composite 

propellant flame. The sodium distributions appear to be quite diffuse, with no significant 

changes between the two formulations. Based on these images, it appears that the NaNO3 has 

undergone decomposition rapidly at the burning surface. Looking at the fluorescent images in 

Figure 4.12, there is some evidence of non-uniform distributions of sodium near the burning 
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surface. Another higher magnification sequence of images of a 3.5% NaNO3 aluminized 

propellant strand burning is shown in Figure 4.13. Near the burning surface, there are localized 

high concentration regions of sodium. These are likely originating from NaNO3 crystals 

decomposing at the burning surface. The NaNO3 crystal size after milling to formulate the 

composite propellant is unknown, but could be further examined with sectioning and 

microimaging. In these images, to approve the sodium distribution at the burning surface. The 

images intensities are lower due to the high magnification collection angle, but sufficient signal 

is shown to identify sodium near-surface distributions.  

 

Figure 4.12  685 nm two-photon excitation in different sodium-doped propellant flame and 

818 nm emission images in natural log of normalized intensity. (a) 1% NaNO3 doped 

propellant flame structure in sequence; (b) 3.5% NaNO3 doped propellant flame structure in 

sequence.   

 

Figure 4.13  685 nm two-photon excitation in 3.5% sodium-doped propellant flame and 818 

nm emission images at higher magnification in natural log of normalized intensity, where 

indicated more clear of the sodium distribution at the burning surface.  

Strong 589 nm emission has been observed from the sodium doped propellant flame 

before through imaging and emission spectroscopy. However, compared with directly measure 
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589/818 nm emission imaging, two-photon LIF also has the advantage of measuring ground-

state atomic sodium, which could help inform the microwave effects on increasing ground-

state sodium concentration in propellant flame. The differences between the two flame 

structures are shown in Figure 4.13, due to the fluorescence was showing ground state atomic 

sodium distribution and 589 nm emission shows the 3p state atomic sodium. From this example 

image comparison, it appears that there is a region of significant sodium concentration (Figure 

4.14) which does not appear in the filtered emission imaging. Since these structures are diffuse, 

we might infer that there is significant sodium population in lower temperature regions of the 

propellant flame which are not appearing in the synchronized emission at 589 nm. 

 

Figure 4.14  Synchronized 685 nm TALIF 818 nm emission and 589 nm emission images to 

show the particle emission could be reduced by using ultra-narrow bandpass filter. (a) TALIF 

imaging, (b) 589 nm emission imaging. 

4.2.2 With Microwave  

4.2.2.1 Burning Rate Enhancement  

Backlit images were used to infer the propellant burning rate for four different 

propellant formulations as previously described in Chapter 3. Three strands of each 

formulation were burned without the microwave field and with the microwave field at a duty 
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cycle of 100%, 50%, and 30%. The burning rate enhancement, as reported in Table 4-1, is 

defined based on normalized burning rate (enhancement = (RMW – R0)/R0). RMW is the 

measured burning rate with different duty cycle microwave condition and R0 is the burning 

rate without field applied. The results show a significant burning rate enhancement (>40%) 

with high sodium dopant levels at 100% microwave duty cycle. As previously shown, the 

addition of aluminum also leads to an enhancement of burning rate with microwave field. The 

average burning rates for the 30% and 50% duty cycle case are consistent with these trends.  

Table 4.1  Propellant burning rate enhancement with microwave field application. 

Formulation Name Microwave duty cycle 

 100% 30% 50% 

Al-AP-NaNO3 3.5% 47% 15% 20% 

Al-AP-NaNO3 1.0% 20% 9% 10% 

AP-NaNO3 3.5% 44% 10% 17% 

AP-NaNO3 1.0% 6.5% 3.1% N/A 

To monitor the degree of coupling to the propellant flame during strand burning, 

forward and reflected microwave power measurements were taken. Figure 4.15 (a) shows the 

forward and reflected power during a single strand burning of 3.5% NaNO3 doped aluminized 

propellant 100% duty cycle. Time zero in this figure 4.15(a) indicates the start time of the 

microwave, not the beginning of the burn (it is ignited 1 s prior to the start time). At this point, 

the propellant burn should be nearly steady state. For the first 15 seconds, while the burn is in 

progress, the reflected power is near zero. This indicates strong absorption to the propellant 

strand and propellant flame. Coupling during this phase may take place as proposed in Chapter 

2 and detailed by Barkley et al.9 Energy deposits in the condensed phase strand, the high 

temperature condensed-phase products through absorption to aluminum-oxide, or with the gas-
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phase flame through free electrons impact with neutrals which are likely liberated from the 

sodium vapor. The second panel, Figure 4.15 (b), shows the normalized absorption (A) based 

on forward and reflected power. This is defined as 𝐴 = (𝑃𝑓 −  𝑃𝑟)/𝑃𝑓, where 𝑃𝑓 is the forward 

power and 𝑃𝑟 is the reflected power. The majority of the imaging data considered is only during 

a few-second time interval from approximately ~5-7 s where the propellant has reached steady 

state burning. Another forward and reflected energy measurement from the diodes for 30% 

duty cycle of microwave and 1 Hz repetition, is shown in Figure 4.16.  

 

Figure 4.15 (a) Microwave forward and reflected power monitored with Schottky diodes with 

a directional coupler. (b) Normalized absorption for the duration of the propellant burning.   

 

Figure 4.16 Calibrated Schottky diode trace to measure forward and backward power 

at 30% duty cycle for burning of a 3.5% NaNO3 doped aluminized propellant strand. 
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Figure 4.17  Microwave power absorption of different propellant formulation during 30% 

duty at 1 Hz. For each box, the median is indicated by a red line, the box indicates the 25-75% 

range of data, the whiskers indicate the full range of values, and outliers beyond ±2.7σ are 

indicated by the symbol ‘+’. (need another 50% duty cycle here). 

The comparison of absorbed microwave energy for the various formulations is 

presented in Figure 4.17. For each case, the data shown is for a 30% duty cycle microwave. 

First, comparing the case of 3.5% sodium doping with and without aluminum, we see stronger 

absorption for the aluminized case. Second, the content of sodium varying from 1% to 3.5% 

seems to be relatively negligible in contributing to additional microwave energy absorption. 

Third, the addition of sodium from 1% to 3.5% without the presence of aluminum promotes a 

significant increase in microwave energy absorption. Finally, with these changes in absorption, 

we should also consider the relative increase of the burning rate with microwave application. 

Although the absorption is approximately the same for the aluminized 1% and 3.5% dopant 

cases, the burning rate increase is 15% versus 9%, respectively. Comparing the cases of 3.5% 

dopant with and without aluminum, we again see a 15% increase in burning rate versus a 10% 

increase in burning rate. To summarize, both the aluminum content and sodium dopant level 

are contributing to increased microwave absorption, but the addition of both is promoting 

additional increases in flame speed without altering the amount of absorbed microwave energy. 
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This suggests that the mechanisms for absorption detailed in Figure 4.17 are important, but 

may have significantly different effects on the magnitude of the burning rate modification.  

4.2.2.2 Image Registration  

To examine differences in the ground-state versus excited-state sodium distribution 

during the microwave-enhanced propellant burning rate, an emission image and two-photon 

685 nm excitation PLIF were taken simultaneously. To directly compare the two images, a 

registration procedure was used so that particle interferences could be inferred in both images. 

A registration test chart taken by two cameras was used for image registration by using Scale-

Invariant Feature Transform (SIFT) algorithms built in MATLAB code (see appendix). SIFT 

is an algorithm in computer vision to detect and describe local features in images, was 

described by Lowe et al85. Due to variation in intensity across each image, the first step was to 

normalize the initial images as shown in Fig 4.18 (a) for the PI ICCD camera and (b) for the 

Photron high-speed CMOS camera. The SIFT method is applied to register images and the 

overlapped image is shown in Fig (c). The matrix is saved to further apply to the PLIF and 

emission imaging as shown in Figure 4.18. 

 

Figure 4.18  SIFT methods of registration of two different intensities images. (a) PI-ICCD 

image; (b) Photron high-speed image; (c) registered overlapped image (red for (a) and green 

for (b), black for registered area. 
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To make a direct comparison between the TALIF image and backlit image or the 

TALIF and emission images, cameras were synchronized as previously described and the 

trigger data was recorded on the oscilloscope to confirm frame synchronization. An example 

of the result of applying the transformation matrix to the PLIF and emission images is shown 

in Figure 4.18. Panel (a) and (b) show the TALIF and emission images, respectively. Panel (c) 

shows both images overlaid, where the white region indicates the same region seen in both 

images. A good correspondence is seen for the global structure, although differences are 

apparent and can be attributed to the planar slice of the three-dimensional flame structure as 

well as variations in emission which may be temperature-dependent. The next section will 

compare the observed differences of the fluorescence and emission flame structures.  

4.2.2.3 Two-photon PLIF at Different Duty Cycles 

In the results presented here, the microwave is modulated at 0%, 30%, 50%, and 100% 

while varying the aluminum content of solid propellant as well as the level of NaNO3.  

(a) TALIF with backlit images to track the flame surface 

Backlit images and fluorescence images were synchronized and registered under 

30% microwave duty cycle experiments. The backlit images shown here are normalized 

by the background light and binarized by thresholding to visualize particulate matter above 

the burning surface and allow measurement of burning surface location. In addition, by 

directly comparing the backlit images to the sodium fluorescence maps, there are regions 

of increased signal which correspond to particulates. The first series presented in Figure 

4.19 shows a comparison of the sodium TALIF with and without microwave field for two 

separate propellant burning events. Examining these images, the signal level is 

significantly higher with the applied microwave field (bottom series). ‘Blooming’ events 

appear diffuse in the fluorescence images and result in a signal increases of 10-20 times in 
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the microwave illuminated cases. Although some signal levels seem to correspond with the 

presence of condensed phase particles (aluminum droplets), the strongest fluorescence 

features in the flames corresponding to 0.2 and 0.6 s are not correlated with any large 

condensed phase particulate. This is consistent with the observation from the fluorescence 

signals that these features are diffuse. These initial studies show a series of interesting 

phenomena including local variation in the sodium density, but the limited magnification 

and low acquisition speed complicate interpretation of the effect of microwave application 

on the sodium distribution.  

 

Figure 4.19  Comparison of sodium laser-induced fluorescence levels during propellant 

burning with no applied microwave field and with 100% duty cycle applied field. 

Based on the qualitative increase in the fluorescence signal intensity during microwave 

coupling, we wanted to determine if the level of sodium was increasing. By directly 

interrogating the ground state with the two-photon LIF technique and observing at 818 nm, a 

qualitative observation of the ground state Na population was made with and without 

microwave application. To quantify the Na fluorescence intensity changes during 30% duty 
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cycle modulation, the fluorescence signal was integrated over each frame with background 

subtraction, keeping track of the sequence of microwave application. Although the process is 

stochastic, this was averaged over 17 microwave cycles and 3 propellant burns. The range of 

the signals in these frames is shown in Figure 4.20, where red lines indicate the median, the 

boxes indicate the middle 50% of observations, with the extremes shown by the whiskers. The 

microwave field is only applied for the frames at 0.2s and the average signal levels are shown 

for no microwave application and 100% and 0% duty cycle application for comparison. There 

is a clear increase in fluorescence signal which can be attributed to an increase of the local 

concentration of ground state atomic sodium. This increase may be promoted by an increased 

flux (increasing burning rate) or some local enhancement due to the modulated field.  

 

Figure 4.20  Na fluorescence intensity for low duty cycle microwave application. Black and 

red lines show the 100% and 0% duty cycle average fluorescence intensity. For each box, the 

median is indicated by a red line, the box indicates the 25-75% range of data, the whiskers 

indicate the full range of values, and outliers beyond ±2.7σ are indicated by the symbol ‘+’. 

Similar phenomena are observed in the case of non-aluminized propellant burning in 

the microwave field. Quantitative comparison of the propellant PLIF average intensity during 

the burning is shown in Figure 4.20 for the four formulations previously discussed. 
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Background emission shows the microwave run at 100% duty cycle without laser excitation 

taken by the same conditions as the ICCD camera to show the magnitude of 818 nm emission 

that may interfere with the collected PLIF signal. The general trends can be summarized for 

all cases as an increase in the ground state sodium concentration with microwave application. 

Comparing the same level of dopants with and without aluminum, the approximate increase in 

sodium fluorescence is comparable. Overall, the higher dopant concentration and higher level 

of aluminum lead to the promotion of the sodium fluorescence signal. This may be an 

indication of a feedback mechanism as the presence of increased sodium in the un-enhanced 

flame leads to higher background levels of free electrons. These more readily lead to additional 

energy absorption, which then leads to increase heating and additional ionization.  

To summarize these observations with two-photon sodium PLIF in propellant flames: 

(1) the microwave application increases the ground state sodium distribution in the flame. (2) 

Aluminized and varying dopant levels in the propellant flames are also tied to shifts in the 

average increase of the sodium fluorescence signals. (3) At similar levels of sodium doping, 

the presence of aluminum also leads to relative increases in the amount of ground state sodium. 

Taken together, the increase in sodium seems to be driven by an interplay between sodium-

dopant and aluminum content. This complementary picture is consistent with the burning rate 

observations presented by Barkley et al.9 and in the early discussion in this dissertation. 
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Figure 4.21  Comparison of two-photon PLIF fluorescence intensity for different propellant 

formulations with and without microwave application. 

(b) TALIF with Na Emission 

Based on the 30% duty cycle, 3.5% sodium doped propellant results shown in Figure 

4.19, the phase-averaged increase in the sodium fluorescence signal was evident. For a series 

of burns, strong Na fluorescence signal was observed with some degree of repeatability, but 

the low-sampling rate and small number of laser shots acquired during a single burn complicate 

the analysis of the “blooming” events that are observed. This section focuses on the use of a 

high-repetition-rate sodium emission imaging in combination with 10 Hz TALIF images at 

increased magnification to inform the origin of the local increases in sodium concentration that 

are tied to the microwave field application.  

‘Blooming’ events were shown in the previous section, but due to the lower 

magnification of the fluorescence images, little detailed structure is evident. The 685 nm two-

photon excitation scheme was used with at a magnification 3X higher than the previous results 

shown. Simultaneous high-speed (1 kHz) 589 nm emission images were taken for each burn. 

Synchronized frames from the magnified fluorescence images and 589 nm emission images 
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are shown in Figure 4.22 and Figure 4.23 during the same burning of 3.5% NaNO3 doped 

aluminized propellant, at 100% microwave duty cycle.  

 

Figure 4.22  Synchronized images of 3.5% NaNO3 doped aluminized propellant flame, 100% 

microwave duty cycle, at the burning surface. (a) 685 nm two-photon excitation and 818 nm 

fluorescence detection; (b) 589 nm emission images.  

 

Figure 4.23  Synchronized images of 3.5% NaNO3 doped aluminized propellant flame, 100% 

microwave duty cycle, same burn as Figure 4.22. (a) 685 nm two-photon excitation and 818 

nm detection; (b) 589 nm emission images. 

By rescaling the ‘blooming’ events in Figure 4.24, it appears the strongest signal region 

in the PLIF image corresponds closely to a region where agglomerates are occupying 

(indicated by a shadow in the 589 nm emission image). From these images, there is a good 

correspondence between particles in both images, although fewer particles are evident in the 

fluorescence image. This is attributed to the narrow laser sheet used in these studies. As 

compared to cases with no sodium addition in aluminized propellants with laser illumination, 

these signal levels are much higher than can be attributed to particle scattering interference 
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through the filter. As a result, the strong signals originating from these particulates are likely 

agglomerates of NaNO3 which have been ejected from the propellant burning surface. The 

mechanisms for this are still unclear, but this has been observed only for cases with microwave 

illumination. Synchronized fluorescence and high-speed emission images at 1 kHz indicate the 

plasma kernel formation, as shown in Figure 4.25.  

 

Figure 4.24  Rescaling of Figure 4.22 and Figure 4.23 ‘Blooming’ events. (a) Figure 4.22 at 

0.6 s; (b) Figure 4.23 at 0.4 s. Images in the top row show fluorescence and the bottom row 

show path-integrated emission.  

 

Figure 4.25 1 kHz high-speed videos of path-integrated emission in sequence. (a) It shows the 

same events at 2 ms as Figure 4.24 (a); (b) It shows the same events at 2 ms as Figure 4.24 

(b). 

4.3 Discussion 

Characterization of sodium atomic distribution in alkali-doped propellant flames has 

been made through single-photon and two-photon laser-induced fluorescence schemes. The 
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two-photon (3s-3d, 685 nm), direct fluorescence emission from 3s-3p (818 nm), resulted in 

excellent signal-to-noise ratios of >100 with limited interference from particle emission and 

scattering. This scheme should allow qualitative maps of ground-state atomic sodium 

distribution in high optical density and high particle scattering environments.  

 

From the observation of increased atomic sodium concentration during the microwave 

applications, it is apparent that there may be opportunities for improving performance in the 

microwave absorption process by changing propellant formulation. Higher magnification 

TALIF imaging help characterize the ‘blooming’ events with the registered imaging of 589 nm 

emission imaging. It is of great interest to examine these effects in a more repeatable solid 

propellant flame configuration (either local diffusion or monopropellant flames) by modifying 

the propellant surface geometry to better capture effects with the laser-based fluorescent 

imaging. The addition of high-speed emission imaging and high-speed backlit imaging in 

combination with low-speed fluorescence imaging provides detailed information on the 

evolution and origin of regions high local sodium concentration.  
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CHAPTER 5.    CONCLUSIONS 

This dissertation presented experimental data showing the potential for a new two-

photon excitation scheme for fluorescence mapping of atomic sodium in environments that 

exhibit high levels of scattering and are at significant sodium concentrations. These 

environments exhibit particular challenges for measurement including the high level of 

scattering due to the multiphase combustion phenomena, the transient variation in flame 

structures, the requirement for single-shot imaging capability, and the high levels of sodium 

concentration. A series of studies in gas-phase flames were used to characterize the excitation 

schemes, and promising strategies were investigated in multiphase composite solid propellant 

combustion. 

Comparisons were made with single-photon and a two-photon excitation scheme in gas 

phase flames to examine the role of potential losses due to ASE, ionization, and quenching. A 

stable flame, generated by a premixed flat flame burner with a nebulizer, allows for the 

investigation of nanosecond single-photon and two-photon laser-induced fluorescence signals 

with the goal of quantitative measurements at high sodium doping levels. Two-photon LIF 

excitation (at 578 nm and 685 nm) has the advantage of avoiding fluorescence trapping or re-

emission as compared with single-photon excitation. In addition, both of the two-photon LIF 

detection schemes investigated thus far show promise of reducing interferences from laser 

scattering due to the non-resonant excitation and detection wavelengths. Ionization and ASE 

were characterized as a function of fluence for both excitation schemes and offer a series of 

datasets that will allow the application of a rate-equation model to the system in order to assess 

the level of saturation and signal losses due to ASE, ionization, and quenching. Significant on-

resonance ionization signals were detected with an ion probe and it was shown that off-
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resonance ionization was below the detection limit at low fluences. In particular, the non-direct 

excitation of the original states of the observed 589 nm and 818 nm emission complicate the 

analysis of fluence dependence data without additional kinetic rate modeling. Two-photon 

excitation from 3s-4s (685 nm) has better fluorescence signal to noise compared the excitation 

of 3s-5s (578 nm) due to the collection of direct fluorescence emission from 3d-3p states (818 

nm). 

Progress towards characterization of the sodium atomic distribution in alkali-doped 

propellant flames has been made through the introduction of a two-photon laser-induced 

fluorescence excitation scheme. This scheme resulted in excellent signal-to-noise ratios of 

>100 with limited interference from particle emission and scattering. This scheme should allow 

qualitative maps of sodium atom distributions in high optical density (high atomic density) 

environments. The two-photon excitation and one-photon emission limits signal-trapping 

effects and yields high signal levels with good discrimination from the background.  

The prospects for qualitative imaging of the atomic sodium distribution in plasma-

enhanced, sodium-doped propellant flames are high, and initial studies showed increases in the 

sodium level during the presence of the microwave field. From the observation of increased 

atomic sodium concentration during the microwave field application, it is apparent that there 

may be opportunities for improved performance in the microwave absorption process in 

propellant formulation. It is of great interest to study the time-decay of the atomic sodium 

levels in these propellant flames following the turn-off of the applied microwave field. By 

determining the time to return to the steady-state non-microwave burning case, strategies for 

improved interactions utilizing less applied power may be realized.  
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Additionally, investigation of the distribution of atomic sodium relative to the 

propellant flame structure (both diffusion and premixed flame structures) will be necessary to 

account for the magnitude of the energy-coupling processes in microwave-enhanced composite 

propellant burning. In combination with sodium planar imaging, fluorescence imaging of OH 

and CN in the propellant flame environment may help elucidate the spatial location of 

microwave plasma initiation and lead to improved understanding of the plasma-enhanced 

propellant burning process.  
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APPENDIX A.    LABVIEW PROGRAM FOR BOXCAR INTEGRATOR 

 

Figure A.1   LabView data acquisition program block diagram for 4 channels boxcar 

integrator 

  



77 

 

Figure A.2  LabView data acquisition program front panel for 4 channels boxcar integrator 
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APPENDIX B.    WR430 TEST SECTION 

 

Figure B.1  Modified WR430 test section in this experiment 
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APPENDIX C.    SIFT IMAGE REGISTRATION MATLAB CODE 

clear all; clc; close all 

Img_1 = Image_1(:,:,10);  % One camera target Image 

Img_1_bs = bitshift(Img_1,2); 

Img_1_bgsub = medfilt2(Img_1_bs,[9, 9]); % Image smooth 

Img_1_bi = imbinarize(Img_1_bgsub, 0.2); % image 

binarized 

bw = Img_1_bi; 

Img_2 = imread('register_4.tif', 3);   % Another camera 

target image 

Img_2 = fliplr(Img_2); 

Img_2 = bitshift(Img_2, 6); 

Img_2 = medfilt2(Img_2,[5, 5]); 

%% 

Img_2_bi = imbinarize(Img_2, 0.1); % image binarized 

Img_2_fl = Img_2_bi(100:700, 100:700); % crop image, 

usually need flip images 

%% detect features by using SIFT  

ptsOriginal  = detectSURFFeatures(bw); 

ptsDistorted = detectSURFFeatures(Img_2_fl); 

[featuresOriginal,validPtsOriginal] = 

extractFeatures(bw,ptsOriginal); 

[featuresDistorted,validPtsDistorted] = 

extractFeatures(Img_2_fl,ptsDistorted); 

%% match features 

index_pairs = 

matchFeatures(featuresOriginal,featuresDistorted); 

matchedPtsOriginal  = validPtsOriginal(index_pairs(:,1)); 

matchedPtsDistorted = 

validPtsDistorted(index_pairs(:,2));figure; 

showMatchedFeatures(bw,Img_2_fl,matchedPtsOriginal,matche

dPtsDistorted); 

title('Matched SURF points,including outliers'); 

%% Exclude the outliers, and compute the transformation 

matrix 

[tform,inlierPtsDistorted,inlierPtsOriginal] =  

estimateGeometricTransform(matchedPtsDistorted,matchedPts

Original, 'similarity'); 

figure; showMatchedFeatures(bw,Img_2_fl, 

inlierPtsOriginal,inlierPtsDistorted); 

title('Matched inlier points'); 

outputView = imref2d(size(bw)); 

Ir = imwarp(Img_2_fl,tform,'OutputView',outputView); 

figure; imshowpair(bw, Ir) 

save('Tform_1.mat', 'tform') 
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